
Achieving

High Software Reliability

Using a Faster, Easier, and Cheaper Method

Prepared for

NASA Independent Veri�cation and Validation Facility

FAU Technical Report TR-CSE-01-20

Taghi M. Khoshgoftaar�

Linda Lim

Erik Geleyn

Florida Atlantic University

Boca Raton, Florida USA

July 2001

�Readers may contact the authors through Taghi M. Khoshgoftaar, Empirical Software Engineer-

ing Laboratory, Dept. of Computer Science and Engineering, Florida Atlantic University, Boca Ra-

ton, FL 33431 USA. Phone: (561)297-3994, Fax: (561)297-2800, Email: taghi@cse.fau.edu, URL:

www.cse.fau.edu/esel/.

1

FAU Technical Report TR-CSE-01-20 2

Executive Summary

The increased reliance on software driven systems requires an increase in soft-

ware quality. Poor software quality can threaten safety, put a company at risk, or

alienate potential customers [4]. With more lives being impacted by software-driven

devices, it is important to ensure that these devices are reliable and accurate.

An e�ective way to ensure software reliability is to apply one of the various

classi�cation or prediction modeling techniques to software quality data. However,

published modeling methods do not always produce software quality models with

su�cient accuracy. Thus, more accurate and robust modeling methods are needed.

Our research demonstrates how software quality modeling methods like case-

based reasoning can be e�ective in facilitating the decision-making processes for

project managers so they can achieve the all-important goals of releasing a product

on time and within the allocated budget, all the while adhering to established

quality standards. There are various techniques that can be used to build software

quality models. There are also many di�erent types of software quality models that

can be built. They include fault prediction and fault classi�cation models.

Case-based reasoning (CBR) is an alternative software quality modeling method

based on automated reasoning processes. It has proven useful in a wide variety of

domains. CBR is especially useful when there is limited knowledge about the

process and when an optimal process solution is not known. However, to our

knowledge very few CBR systems for software quality modeling have been deployed.

A CBR system �nds a solution to a new problem based on past experience,

represented by cases in a case library. Each case is indexed for quick retrieval

according to the problem domain. A solution process algorithm uses a similarity

function to determine the most similar modules from the case library to a target

module with respect to the independent variables. The algorithm retrieves relevant

cases and determines a solution to the target problem. A CBR system can function

as a software quality classi�cation model. The objective is to assign a module to

the correct class or to a prediction of a quality factor early in development. A good

\solution" is a prediction that turns out to be correct after fault data is known.

While previous work [2] didn't provide extensive empirical work, this research

presents empirical results with CBR using two case studies. Software metrics data

for both the case studies was obtained as a result of an extensive data collection

e�ort performed at Motorola Inc. Through the empirical work with these case

studies, we attempt to build useful software quality estimation models to predict

the quality of the software prior to system tests, and by analyzing the fault removal

process, determine where time, money, and energy can be saved. The �rst case

study sought to determine the quality of the software just prior to the system test

by building classi�cation and prediction models. The second case study sought to

analyze the fault removal process during the system tests to determine whether or

not an inspection for a fault-�x is necessary. Our second case study proves that by

analyzing several attributes, quality models can be built that may determine the

outcome of an inspection as accept or reject. By not having to inspect all �xes,

FAU Technical Report TR-CSE-01-20 3

the development team can redirect e�orts to �xing the more complex faults or to

increasing the number of faults �xed prior to market release.

From this research, we have proven that CBR is a simple yet very e�ective

methodology for software quality modeling. We have also shown that we could

build useful software quality models using very few metrics and yield good results.

Keywords: software reliability, faults, fault-prone modules, software metrics, clas-

si�cation, prediction, return on investment, case-based reasoning.

FAU Technical Report TR-CSE-01-20 4

1 Introduction

Recent publications have stated that models and measurements were the means for un-

derstanding, controlling, and improving development processes [19] in the software en-

gineering �eld. Prior applied research sponsored by NASA have summarized methods

for modeling fault-prone software modules [5], and the bene�ts of applying a case-based

reasoning approach [3].

Software product metrics are quantitative attributes of software abstractions. We

can consider three main types of software product metrics: call graphs, control ow

graphs, and statements. Attributes of a node in a call graph like fan-in and fan-out

are examples of call graph metrics [18]. Control ow graph metrics are more commonly

used and McCabe's cyclomatic complexity is one of the best known in this category [17].

Statement metrics are really common and the most famous is surely the number of lines

of code, but number of operators or operands are other good examples of statement

metrics.

Software process metrics refer to the process development and can be retrieved from

problem reporting systems and con�guration management systems. Process metrics turn

out to be especially useful for large legacy systems with high reuse.

Various classi�cation and prediction modeling techniques can use these software

metrics as input to compute respectively either a class membership (fault-prone, not

fault-prone) or an estimation of a quality factor (number of faults in the module un-

der development). Previous research at the Empirical Software Engineering Laboratory

(ESEL) at Florida Atlantic University (FAU) has used discriminant analysis [4], logistic

regression [6], decision trees [7][20], arti�cial neural networks [8][9], and fuzzy logic [23].

FAU Technical Report TR-CSE-01-20 5

An e�ective prediction and classi�cation modeling technique is case-based reasoning.

Based on the assumption that a future module will have the same number of faults as

a similar module developed previously, a case-based reasoning model is able to retrieve

a prediction from past instances, from cases in the CBR system library [3]. These past

instances are the cases of our library. They are well-known data from past projects.

These cases contain all the available information about the described program module,

and include:

1. The independent variables to evaluate the similarities between the modules.

2. The dependent variable to make a prediction for future program modules.

In our case study we wanted to estimate a quality factor or a class (fault-prone, not

fault-prone) in a currently developed program module, to be able to take corrective action

early in the life cycle. Case-based reasoning models use similarity functions to determine

from the case library the most similar items to the module under development. Various

similarity functions are available and they all compute a distance from the studied module

to the cases in the library. The closest modules determined by the similarity function

are called nearest neighbors. We can then select the number of nearest neighbors we want

to consider to build the prediction for the dependent variable using a solution algorithm.

Solution algorithms compute a prediction of the dependent variable using the dependent

variables of the nearest neighbors from the case library. Some algorithm give the same

importance to all the nearest neighbors while others give more importance to the closest

cases.

Our research is primarily focused on two case studies. Through these case studies,

we attempt to build useful software quality models in order to predict the quality of

FAU Technical Report TR-CSE-01-20 6

the software prior to system test and, by analyzing the fault removal process, determine

where time, money, and energy can be saved. We used few primitive software metrics

and yielded good results. The �rst case study sought to determine the quality of the

software just prior to system test. In this case study, we built classi�cation models and

prediction models. The classi�cation models classi�ed source �les as either fault-prone or

not fault-prone based upon a threshold determined by the user. A source �le represents a

collection of high-level code modules on a per feature basis. Experiments were conducted

by varying the user-de�ned thresholds and model validation techniques. The prediction

models predicted the number of faults discovered within each source �le during system

test. The second case study sought to analyze the fault removal process during system

test to determine whether or not an inspection for a fault-�x is necessary.

The objectives pursued can be enumerated in the following way:

1. We would like to classify the fault-proneness of source �les and predict the number

of faults discovered during system test to predict the quality of the software prior

to system test. Predicting the software quality early will provide managers with

the opportunity to take appropriate software quality enhancement strategies.

2. We would like to prove that by analyzing the fault removal process, managers

could save time, money, and energy by determining which inspections are worth

conducting. By classifying the outcome of an inspection as accept versus reject,

managers can save resources by inspecting only the fault-�xes that the model deems

necessary.

From this research, we have proven that through the use of a simple yet very e�ective

methodology, CBR, we can build useful software quality models using very few primitive

FAU Technical Report TR-CSE-01-20 7

metrics and yield good results. The Type I and Type II misclassi�cation rates were

used to evaluate the classi�cation accuracy of the software quality classi�cation models.

Where a Type I error misclassi�es a not fault-prone module as fault-prone, and a Type

II error misclassi�es a fault-prone module as not fault-prone. The average absolute error

and the average relative error values, were used to evaluate the predictive accuracy of

the software quality prediction models.

The remainder of this paper is structured as follows: Section 2 details the CBR-

based modeling methodology implemented in this research. Section 3 and 4 reveal the

experiments conducted in both case studies, and the results obtained from these experi-

ments. Section 5 explains the conclusions drawn from this study and identi�es possible

future work in this area of research.

2 Case-Based Reasoning

Case-Based Reasoning is a type of modeling methodology that is based on automated

reasoning processes [10]. It is an attractive method to implement because it is based

on intuitive human reasoning. As a result, CBR methods are very easy to use, and the

results are easy to understand and interpret. CBR has been used successfully in areas

such as software cost estimation, software reuse, and software design [16]. Our research

concentrates e�orts on demonstrating the use of CBR to develop useful and accurate

software quality models.

In addition to its simplicity and ease of use, CBR is very exible because it is

applicable for both classi�cation and prediction modeling. In our research, we capitalize

on this exibility by generating several software quality models for both prediction and

FAU Technical Report TR-CSE-01-20 8

classi�cation. The additional advantages of using CBR over other modeling techniques

include [11]:

1. The ability to alert users when a new case is outside the bounds of current experi-

ence.

2. The ability to interpret automated classi�cation through the detailed description

of the most similar case.

3. The ability to take advantage of new or revised information as it becomes available.

4. The ability for fast retrieval as the size of the library scales up. CBR is scalable to

very large case libraries and is amenable to concurrent retrieval techniques.

The main premise of the CBR method is to look at past cases that are similar

to the present case in an attempt to predict or classify the speci�c attributes desired.

For instance, assume that a CBR system functions as a software quality classi�cation

model to classify current cases as fault-prone versus not fault-prone. The following can

then be described as the working hypothesis: current cases that are in development will

more than likely also be fault-prone if past cases having similar attributes were fault-

prone [10]. Determining whether a case is considered fault-prone is quite subjective as it

is often based upon whether or not it exceeds a particular threshold set by the user

The past cases are data that were collected from previous projects. These cases are

stored in a library, and each case contains all the known attributes. These attributes pro-

vide descriptive information about each case. The attributes can be further categorized

into dependent variables and independent variables. The independent variables are vari-

ables that are known early in the software development cycle. The dependent variables,

FAU Technical Report TR-CSE-01-20 9

on the other hand, are not known until the later phases of the software development

cycle. These are the variables that we would like to classify or predict by analyzing the

set of independent variables that are known early.

The past cases contained in the library are known collectively as the �t data set.

In the �t data set, all the attributes (independent variables and dependent variables)

are known, and a model is built from this information. The target data (test data) set

containing the present cases are often from a current project. In the target data set, the

independent variables are the only attributes that are known. By applying the model

built using the �t data set, we can classify or predict the dependent variable(s) desired

in the current project early in the life cycle. Management can utilize this information for

planning, decision making, and quality assessment purposes.

If there is only one data set available, then strategies can be implemented to obtain

a target data set for model validation. This is the situation that was encountered in our

research. There are two solutions that can be implemented when only one data set is

available for software quality modeling. They include cross-validation and data splitting.

Data splitting derives the �t data set and target data set by randomly sampling from the

cases available and impartially partitioning them into the two data sets. Cross-validation

is described [12] in the following manner:

� Suppose there are n observations available in a single data set. Let one observation

be the target data set and all others be the �t data set.

� Build a model and evaluate it for the current observation or target data set.

� Repeat for each observation, resulting in n models.

FAU Technical Report TR-CSE-01-20 10

� Let the misclassi�cation rates summarize the n evaluations of the models.

For our research, we used both the cross-validation method and the data splitting

method to build and validate our software quality models.

To �nd past cases from the case library that are similar to the present case, CBR

uses a similarity function. A similarity function measures the relationship or similarity

of the present case to every other case in the case library. The relationship is determined

by a distance measure. The closer a present case is to a case in the case library, the more

similar it is to that particular case. The cases that are most similar to the present case

are noted, and from this set of cases, a solution can be derived. There are several types

of similarity functions available including Absolute Distance, Euclidean Distance, and

Mahalonobis Distance. Based upon previous research [21][22], the Mahalonobis Distance

similarity function revealed higher performance accuracy with raw data sets than the

other similarity functions for both prediction and classi�cation models.

For classi�cation models, classi�cation methods are selected. Classi�cation methods

include Majority Voting and Data Clustering. Based upon previous research [21], Data

Clustering was shown to be a better classi�cation method.

If CBR is being used to build software quality prediction models, then in addition

to selecting a similarity function, a solution process algorithm is also selected. The

solution process algorithm uses the similarity function to estimate the actual value of

the dependent variable(s). Types of solution algorithms are Unweighted Average and

Inverse-Distance Weighted Average. Based upon previous research [22], the Inverse-

Distance Weighted Average performs better than the Unweighted Average.

In summary, the general steps for CBR modeling methodology are as follows:

FAU Technical Report TR-CSE-01-20 11

1. A �t data set is speci�ed as the case library. This data set represents data from a

past project where all the independent and dependent variables are known. This

information is used to build the software quality models. Let cjk be the value of the

k
th independent variable for case j and let cj be the vector of independent variable

values for case j [10].

2. A target data set is speci�ed for model validation. This data set represents data

from a current project where the dependent variables are unknown. The dependent

variables are the attributes that are to be classi�ed or predicted by the models built.

Let xik be the value of the k
th independent variable for target case i, and let xi be

the vector of independent variable values for case i [10].

3. A similarity function is selected. The similarity function calculates the distance,

dij, between the current case xi and every case cj in the case library. A small

distance indicates that the cases are similar.

4. The number of cases to be used in the solution algorithm is selected (within the

nearest neighbors). Once the distances are computed for every case cj, they are

then sorted. The cases with the smallest distances are of primary interest. Let N be

the complete set of nearest neighbors, which is the set of cases contained within the

�t data set that are most similar to the current case, xi. The number of cases, nN ,

represents the number to be selected out of N for analysis and prediction. During

the model development, the user can experiment with various values in order to

reach an optimum number for the model.

5. For prediction models, the solution algorithm is selected. The solution algorithm

FAU Technical Report TR-CSE-01-20 12

will estimate the actual value of the dependent variable(s) for the current case, xi.

6. For classi�cation models, the classi�cation method is selected (data clustering or

majority voting).

7. The models are evaluated for accuracy. For prediction models, the evaluation is

performed by assessing the error of the predicted dependent variable. The two error

values that are calculated include Average Absolute Error and Average Relative

Error. For classi�cation models, the evaluation is performed by assessing the Type

I and Type II misclassi�cation rates. These rates are discussed in greater detail

later.

2.1 Similarity Function

A similarity function is used to calculate the distance, dij, from the current case, xi, to

each of the cases in the case library, cj. It should be noted that the raw metrics collected,

i.e., the independent variables, are often measured in varying ways and could contain a

wide variety of ranges and scales. With this being the case, it is often bene�cial to �rst

standardize the metrics. \Standardization" is a method that allows all metrics to use

the same unit of measure. For each metric, xi, the standardized metric is computed

according to the following formula:

Zi =
xi � xi

Si
(1)

where, xi is the mean and Si is the standard deviation of the ith metric, xi. Standardiza-

tion is not necessary for all of the similarity functions available. In fact, the Mahalonobis

FAU Technical Report TR-CSE-01-20 13

Distance (described later in this section) similarity function does not require standard-

ization. The following are some similarity functions that can be used in CBR for both

prediction and classi�cation.

Absolute Di�erence Distance: This distance is also known as City-Block Distance

or Manhattan Distance. It is calculated by taking the weighted sum of the absolute

value of the di�erence in independent variables between the current case and a past case.

The user of the model provides the weights, and the absolute value is taken because the

direction of the di�erence in distance is irrelevant. This distance is primarily used for

numeric attributes. The following is the equation for Absolute Di�erence Distance:

dij =
mX
k=1

wkjcij � xikj (2)

where, m is the number of independent variables, and wk is the weight of the kth

independent variable.

Euclidean Distance: This distance views the independent variables as dimensions

within an m-dimensional space, with m being the number of independent variables. A

current case is represented as a point within this space. The distance is calculated by

taking the weighted distance between a current case and a past case within this space.

Again, the user of the model provides the weights, and this distance is also commonly

used when the data set contains quantitative attributes. The following is the equation

for Euclidean Distance:

dij = (
mX
k=1

(wk(cjk � xik))
2)

1

2 (3)

FAU Technical Report TR-CSE-01-20 14

Mahalonobis Distance: This distance measure is an alternative to the Euclidean

Distance. It is used when the independent variables are highly correlated. Mahalonobis

Distance is a very attractive similarity function to implement because it can explicitly

account for the correlation among the attributes, and the independent variables do not

need to be standardized. In cases where the variances of the independent variables have

unit variances and are uncorrelated, the Mahalonobis Distance is simply the Euclidean

Distance squared. The following is the equation for Mahalonobis Distance:

dij = (cj � xi)
0
S
�1(cj � xi) (4)

Prime (0) means transpose, and S is the variance-covariance matrix of the independent

variables over the entire case library. S�1 is its inverse.

2.2 Solution Algorithms

A solution algorithm is used in prediction models to estimate the actual value of the

dependent variable(s). The following are some solution algorithms that can be used in

CBR for prediction modeling.

Unweighted Average: This algorithm estimates the value of the dependent vari-

able(s), byi, for the current case by taking the average of the dependent variable(s) of

the closest nN cases from the case library. The following is the equation for Unweighted

Average:

byi = 1

nN

X
j2N

yi (5)

Inverse-Distance Weighted Average: This algorithm uses the distance measures

between the current case and the closest cases in the case library as weights in a weighted

FAU Technical Report TR-CSE-01-20 15

average. Because a smaller distance indicates a better match, each case in the nearest

neighbors set is weighted by a normalized inverse distance, �ij. The case from the case

library that is most similar to the current case will yield the largest weight. This of

course, will be a huge factor in the predicted value of the dependent variable(s). The

following are the equations used for Inverse-Distance Weighted Average:

�ij =
(1=dij)P
j2N(1=dij)

(6)

byi = X
j2N

�ijyi (7)

2.3 Classi�cation Methods

There are several classi�cation methods that can be used to predict the dependent vari-

ables in the software quality classi�cation models. Before any classi�cation models can

be built, the observations in the �t data set are classi�ed into particular classes. For

instance, source �les can be classi�ed as fault-prone (FP) or not fault-prone (NFP).

The observations could then be classi�ed as FP or NFP based on whether the number

of faults exceeds a threshold set by the user. Therefore, the class of an observation can

be determined by the following:

Class =

8>><
>>:

FP; if y � threshold

NFP ; otherwise

(8)

where, y is the number of faults.

The following are some classi�cation methods that can be used in CBR for classi�-

cation.

FAU Technical Report TR-CSE-01-20 16

Data Clustering: With the Data Clustering method, the case library is partitioned

into clusters or groups according to the actual class of each case. The distances to the

clusters are then computed for the current case. The classi�cation of the current case is

then determined by comparing the ratio of the average of these distances to the cost ratio.

The cost ratio is de�ned as CI/CII, where CI is the cost of a Type I misclassi�cation,

and CII is the cost of a Type II misclassi�cation.

A Type I misclassi�cation is when a classi�cation model classi�es a case as fault-

prone when it is actually not-fault prone. A Type II misclassi�cation is when a clas-

si�cation model classi�es a case as not fault-prone when it is actually fault prone [12].

The Type II misclassi�cations are generally considered more serious than the Type I

misclassi�cations because they represent the cost of releasing fault-prone cases in the

�nal product. Type I misclassi�cations, on the other hand, represent the e�orts wasted

on analyzing low-risk modules.

During model development, the user can experiment with various cost ratios to reach

the desired value for their model. Since Type II errors are considered more serious we

prefer to select the most balanced Type I and Type II misclassi�cation rates with the

Type II misclassi�cation rate being as low as possible.

The classi�cation terminology for Data Clustering is as follows [10]: for an unclassi-

�ed case, xi, let dnfp(xi) be the average distance to the not fault-prone nearest neighbor

cases, and let dfp(xi) be the average distance to the fault-prone nearest neighbor cases.

The following is the generalized classi�cation rule for Data Clustering:

Class(xi) =

8>><
>>:

NFP; if
dfp(xi)

dnfp(xi)
>

CI
CII

FP; otherwise

(9)

FAU Technical Report TR-CSE-01-20 17

Majority Voting: Majority Voting polls the cases from the nearest neighbor set, N ,

to determine the classi�cation of the current case. Since a majority consensus is needed,

an odd number of cases is required. The probability of classi�cation as either fault-prone

versus not fault-prone, for instance, would depend on the percentage of cases within

nN that are fault-prone and not fault-prone. These percentages would represent the

probability of the current case being fault-prone and not fault-prone, respectively. The

classi�cation of the current case would then depend on whether or not the ratio of these

probabilities exceeds a constant c, which is chosen empirically. The following is our

generalized classi�cation rule for Majority Voting:

Class(xi) =

8>><
>>:

NFP; if
Pnfp

Pfp
> c

FP; otherwise

(10)

where, Pnfp is the probability that the current (target) case is not fault-prone, and

Pfp is the probability that the current (target) case is fault-prone.

2.4 Performance Evaluation

The statistics used for performance evaluation depends on the type of model that is being

evaluated. For prediction models, the statistics used are the average absolute error, AAE,

and the average relative error, ARE. For classi�cation models, the statistics used are the

Type I and Type II misclassi�cation rates.

Performance Evaluation for Prediction Models: The following are the equations

used for AAE and ARE:

AAE =
1

n

nX
i=1

jyi � ŷij (11)

FAU Technical Report TR-CSE-01-20 18

ARE =
1

n

nX
i=1

�����
yi � ŷi

yi + 1

����� (12)

where 1 is added to the denominator in the computation of ARE to avoid any division

by zero.

Performance Evaluation for Classi�cation Models: The misclassi�cation rates

are determined by assessing the actual classi�cations. The model determines the number

of cases that are fault-prone and the number of cases that are not fault-prone. The

number of misclassi�ed cases is determined and the percentage over the total number

of cases is determined to be the misclassi�cation rate. The two misclassi�cation rates

are inversely related, such that when experiments are performed using di�erent cost

ratios, Type I misclassi�cation rate increase is associated with a corresponding Type II

misclassi�cation rate decrease. Inversely, if the Type II misclassi�cation rate increases

as the cost ratio changes, then the Type I misclassi�cation rate decreases. Changes in

the cost ratio can have a signi�cant e�ect on the model chosen. Previous research [1],

has indicated that cost ratios have an e�ect on the usefulness of a particular model.

3 Empirical Case Study 1

This section will �rst describe the system used for our �rst empirical study. The di�erent

metrics collected will be highlighted and then the results will be presented.

3.1 System description

Our research was conducted on two data sets obtained from the industry. The data

sets were both collected from the same project within the organization. The project

FAU Technical Report TR-CSE-01-20 19

Table 1: System Pro�le for Case Studies

Applications Service Con�guration Software

Language C++

Application 1: AENSCL* 320 million

Application 1: Actual Lines of Code 29 million

Application 2: AENSCL* 300 million

Application 2: Actual Lines of Code 27.5 million

Number of source �les 1400

* AENCSL is Assembly Equivalent Non-Commented Source Lines of Code

consisted of two large Windows-based applications used primarily for customizing the

con�guration of wireless products. The data sets were obtained from the initial release

of these applications. The applications are written in C++, and they provide similar

functionality. As a result, the applications contain common code. The main di�erence

between the two applications is the type of wireless product that it can support. Table 1

presents the pro�le of the system used for this case study.

3.2 Data Collection E�ort for Case Study 1

For this �rst case study involving source �les, we derived our data set of �les by viewing

the con�guration management system database. A con�guration management system

database keeps track of changes made to various software development deliverables such

as source �les [13].

FAU Technical Report TR-CSE-01-20 20

The problem reporting system database was then used to determine the INSP metric

used in our case study. A problem reporting system database is used to account for

problems logged by tracking the problem from discovery to resolution. The raw data

tracked can include problem identi�er, problem status, problem severity, date discovered,

source �les modi�ed, and problem type. The database can also be used to track inspection

information as well. The INSP metric is the number of times a source �le was inspected

prior to system tests. The inspections logged in the problem reporting database enabled

us to indirectly determine INSP.

The remainingmetrics are related to di�erent measures of lines of code, BASE LOC,

SY ST LOC, BASE COM , and SY ST COM . They were obtained by using an inter-

nally developed tool which has the ability to count the lines of code when source code

�le versions are provided as input. Table 2 presents the selected product and process

metrics.

3.3 Case Study 1 Description

Case Study 1 analyzes our �rst data set, which contains data on source �les. After the

data set was preprocessed and cleaned [13], 1211 observations remained. In this particular

case, an observation is a source �le. One process metric and four product metrics were

used as independent variables. The �ve metrics are described in Table 2. Because this

list of raw metrics is smaller compared to other research studies (sometimes more than 20

metrics), it is quite manageable. As a result, data reduction or transformation techniques,

such as principal components analysis, (PCA) [3], were not necessary. This set of metrics

will be referred to as RAW FILES � 5. The correlations among the �ve independent

FAU Technical Report TR-CSE-01-20 21

Table 2: Product and Process Metrics for Case Study 1

Product Metrics Description

BASE LOC Number of lines of code for the source �le

version just prior to the coding phase.

This represents auto-generated code.

SYST LOC Number of lines of code for the source �le

version delivered to system test.

BASE COM Number of lines of commented code for the source

�le version just prior to the coding phase. This

represents auto-generated code.

SYST COM Number of lines of commented code for the source

�le version delivered to system test.

Process Metrics Description

INSP Number of times the source �le was inspected

prior to system test.

variables are shown in Table 3. Figure 1 displays the frequency of the number of faults

in the 1211 source �les. The dependent variable in this �rst case study is the number of

faults discovered in a source �le during system tests.

FAU Technical Report TR-CSE-01-20 22

Table 3: Correlation Statistics for RAW FILES � 5

CORRELATION INSP BASE LOC SYST LOC BASE COM SYST COM

INSP 1.00 0.48 0.73 0.16 0.51

BASE LOC 1.00 0.67 0.51 0.14

SYST LOC 1.00 0.44 0.69

BASE COM 1.00 0.21

SYST COM 1.00

Frequency of Faults

809

140

62 66
49

22
6 9 6 1 5 5 3 2 1 3 3 3 2 1 1 2 1 1 2 1 1 1 1 1 1

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 23 24 25 27 28 32 42 44 48 59 62 97

Faults

F
re

qu
en

cy

Figure 1: Frequency of faults

3.4 Case Study 1 Methodology

As we already mentioned, user-de�ned thresholds determine the class of an observation.

In our �rst case study, the fault-proneness of a source �le is determined by comparing

the number of faults, y, to three possible thresholds.

FAU Technical Report TR-CSE-01-20 23

There are three general steps to software quality modeling. The �rst step is to build

the model. The second step is to validate the model, and the third step is to evaluate its

accuracy. There are several techniques available to build and validate software quality

models.

Validation techniques can include cross-validation and data splitting. The accuracy

of the classi�cation models is evaluated by calculating the Type I and Type II misclas-

si�cation rates. The accuracy of the prediction models is evaluated by calculating the

Average Absolute Error (AAE) and Average Relative Error (ARE).

The following steps describe the modeling methodology used in our �rst case study

for both types of models:

1. Collect con�guration management and problem reporting data from a past project.

2. Preprocess and clean the data.

3. Identify the following: the list of independent variables and the dependent variable.

We identi�ed �ve independent variables, and our dependent variable is the number

of faults discovered in a source �le during system test.

4. For classi�cation modeling: Determine the class of each observation.

Class =

8>><
>>:

FP; if y � threshold

NFP ; otherwise

(13)

where, FP is fault-prone, NFP is not fault-prone, y is the number of faults, and

threshold is determined based upon project-speci�c criteria.

5. Prepare the �t and target data (test data) sets. A �t data set is used to build the

model, while a target data set is used to validate the model.

FAU Technical Report TR-CSE-01-20 24

6. Select a modeling methodology and built the model. We used CBR. The models

were validated and evaluated for their accuracy. We validated the models using

cross-validation and data splitting.

3.5 Classi�cation Experiments

There were six classi�cation experiments conducted in our �rst case study. The �rst three

experiments involved the entire data set with one experiment conducted for each fault-

proneness threshold chosen. The target data (test data) set for these experiments was

the same as the �t data set, and the models built were validated using cross-validation.

The second set of three experiments involved the use of a �t data set and a separate

target data set for building and validating the models. Data from subsequent releases

was not available during our research therefore, a �t data set and a target data set were

derived from the single data set available. This technique is possible when the data set

is large, and it is useful because it provides a simulation of model application in practice.

The data set observations were impartially split to create a �t data set and a target data

set. The user determines the proportion of observations in each data set. In our research,

the �t data set comprised 2/3 of the original data set or 807 observations, and the target

data set comprised 1/3 of the original data set or 404 observations. The models built in

our second set of classi�cation experiments were validated by cross-validation using the

�t data set and by data splitting using the target data set.

Based on the CBR methodology described in section 2, the following are the char-

acteristics of our classi�cation models for Case Study 1:

1. A �t data set is speci�ed as the case library. For the �rst set of three experiments,

FAU Technical Report TR-CSE-01-20 25

the �t data set is the entire data set. For the second set of experiments, the �t

data set is 2/3 of the entire data set.

2. A target data set is speci�ed for model validation. For the �rst set of experiments,

the target data set is the same as the �t data set. For the second set of experiments,

the target data set is 1/3 of the entire data set.

3. A similarity function is selected. We selected Mahalonobis Distance.

4. The number of cases is selected. This is a signi�cant parameter that is varied during

model selection. The model with the optimum results dictates the optimum value

for the number of cases, nN .

5. For classi�cation models, the classi�cation method is selected. We selected Data

Clustering.

6. The models are evaluated for accuracy. We used Type I and Type II misclassi�ca-

tion rates.

In addition to the CBR methodology speci�cations mentioned above, the cost ratio

parameter, CI/CII, was also varied to determine the most balanced misclassi�cation

rates. The (cost ratio, nN) parameter combinations were varied for each model built,

and the model that yielded the \best results" provided the optimum (cost ratio, nN)

combination. In our research, \best results" is de�ned as the model that yields the most

balanced Type I and Type II misclassi�cation rates with the Type II misclassi�cation

rate being as low as possible.

The six classi�cation experiments based on the entire data set and the �t/target

data set were conducted for each of the three fault-proneness thresholds. The varying of

FAU Technical Report TR-CSE-01-20 26

thresholds in our experiments is a type of sensitivity analysis that allows us to determine

whether the models built are sensitive to the thresholds selected by the user. The three

fault-proneness thresholds selected for our research are the following:

� Threshold 1 : a �le is fault-prone if it contains one or more faults: y � 1

� Threshold 2 : a �le is fault-prone if it contains two or more faults: y � 2

� Threshold 3 : a �le is fault-prone if it contains three or more faults: y � 3

The main stimulus for selecting appropriate thresholds is to be able to build the most

useful and relevant quality model possible. If a threshold is set too low, the model

may classify all observations as fault-prone. Similarly, if a threshold is set too high, the

model may classify all observations as not fault-prone. In both situations, the models

would not reveal any useful information. Therefore, it is important to set a reasonable

fault-proneness threshold for the particular data available in order to build the optimum

software quality model.

Classi�cation Experiment 1- Entire Data Set, Threshold 1: When Threshold

1 is used, 402 source �les or 33% of the 1211 source �les are deemed to be FP . The

remaining 809 source �les or 67% are deemed to be NFP . Data clustering was used

with CBR to classify the �les. Each observation (source �le) within the �t data set was

analyzed and placed into its appropriate FP or NFP cluster, based upon the threshold

classi�cation stated above. Using cross-validation, we built and validated the model.

The Mahalonobis Distance similarity function was used to determine the distance from

the FP nearest neighbor cases and from the NFP nearest neighbor cases. Based on

previous research [21], the Mahalonobis Distance reveals a high performance accuracy

FAU Technical Report TR-CSE-01-20 27

Fault-Proneness Threshold = 1.0

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

0 1 2 3 4 5 6

Cost Ratio (CI/CII)

M
is

cl
as

si
fi

ca
ti

on

E
rr

or
 (

%
)

Type I

Type II

Type I

Type II

Figure 2: Type I and Type II Misclassi�cation Rates Per Cost Ratio- Threshold 1

for raw data sets. The ratio between the average of these distances was compared to

the cost ratio. This comparison to the cost ratio dictates to which cluster, the current

observation is to be classi�ed.

In our research, we varied the cost ratio and the number of cases representing the

nearest neighbors. First, for each nN scenario, we varied the cost ratio. The cost ratio

that provided the most balanced Type I and Type II misclassi�cation rates was deter-

mined to be the optimum cost ratio for that particular nN . Table 4 identi�es the cost

ratios and their associated Type I and Type II misclassi�cation rates where nN = 1.

Figure 2 displays the tradeo� between the misclassi�cation rates as a function of the

cost ratio. This demonstrates the inverse relationship between the Type I and Type II

misclassi�cation rates. Once the optimum cost ratio for each nN was determined, the

results were tabulated and the (cost ratio, nN) combination with the most balanced mis-

classi�cation rates was selected to be the overall optimum model. Table 5 displays the

model results for Experiment 1.

Table 4 indicates that for the models where nN = 1, the optimum cost ratio is 0.5

FAU Technical Report TR-CSE-01-20 28

because it provided the most balanced misclassi�cation rates. Figure 2 shows the inverse

relationship between the misclassi�cation rates. As the cost ratio increases, the Type

II misclassi�cation rate also increases. Since Type II errors are generally more costly

than Type I errors, models with cost ratios greater than 1 would more than likely yield

inappropriate models. Table 5 indicates that for Threshold 1, the optimum model is

where nN = 1 and the cost ratio = 0.5.

It is interesting to note how a model with nN = 1 yielded the best results. Within the

source �le data set, it was determined that there were several groups of source �les that

contained the same exact values for all �ve of the independent variables selected. This

indicates that when an observation is selected for comparison to the observations in the

case library, an exact match can be found. As a result, the classi�cation is perfect. This

perfect classi�cation is unique to CBR which reveals why it is an attractive methodology

to implement. When an exact match is found, no errors are calculated because the

classi�cation is perfect. This explains the excellent performance that can be obtained

when using CBR.

For Threshold 1, the optimum model shows a Type I misclassi�cation rate of 14.34%

and a Type II misclassi�cation rate of 13.68%. Following the same analysis posed in [14],

suppose we propose to increase our reliability by conducting extra reviews for those source

�les that are suspected of being FP at a cost of one unit. If any of the �les were later

determined to be NFP , then the extra reviews would simply be a waste of time. In our

experiment, the best cost ratio was determined to be 0.50. Therefore, if the cost of a

Type I misclassi�cation is one unit, then the cost of a Type II misclassi�cation is two

(1/0.50) units. However, the two units actually represent the net cost of forfeited bene�t.

Because the cost of extra reviews is one unit, the actual cost of a Type II misclassi�cation

FAU Technical Report TR-CSE-01-20 29

is three units. The three units consist of the cost of the forfeited bene�t plus the cost of

reviews. A perfect model for Threshold 1 would cost 402 units for review and yield

402 � 3 = 1206 (14)

units in avoided debugging costs. When this model is compared to the optimum model

for Experiment 1, the expected cost of misclassi�cations would be

(809 � 0:1434 � 1) + (402 � 0:1368 � (3� 1)) = 226 (15)

units. The cost of reviews would be

(809 � 0:1434 � 1) + (402 � 0:8632 � 1) = 463 (16)

units. The bene�t would be reliability improvement for

(402 � 0:8632) = 347 (17)

fault-prone �les. This might avoid

(347 � 3) = 1041 (18)

units in debugging costs later. This would be considered a good return on investment

(ROI), 1041:463. The model identi�es the FP �les that need extra reviews. In this

experiment, the cost of the extra reviews for the FP �les would be 463 units. By focusing

e�orts on the source �les that are deemed to be FP early, managers could potentially

save a net of

(347 � 2) = 694 (19)

units of debugging costs in the future.

FAU Technical Report TR-CSE-01-20 30

Table 4: Cost Ratio Misclassi�cation where nN=1-Threshold 1

Fit(Cross - Validation)

Cost ratio CI/CII Type I Type II

0.0005 31.77% 3.73%

0.001 31.77% 3.73%

0.0015 31.64% 3.73%

0.002 31.64% 3.73%

0.0025 31.40% 3.73%

0.05 25.96% 5.72%

0.1 22.99% 6.22%

0.15 21.26% 7.46%

0.2 20.03% 8.96%

0.25 18.91% 9.70%

0.3 17.80% 10.20%

0.35 16.19% 10.45%

0.4 15.58% 11.94%

0.45 14.83% 12.44%

0.5 14.34% 13.68%

0.55 13.23% 15.42%

0.6 12.36% 16.67%

0.65 11.99% 17.41%

0.7 11.50% 19.15%

0.75 11.13% 19.65%

0.8 10.14% 20.65%

0.85 9.64% 21.39%

0.9 8.78% 22.39%

0.95 8.41% 23.13%

1 7.05% 24.63%

1.5 5.81% 31.84%

2 4.45% 37.07%

2.5 3.83% 40.55%

3 3.59% 45.52%

3.5 3.21% 47.51%

4 2.97% 49.50%

4.5 2.23% 50.25%

5 2.10% 53.23%

FAU Technical Report TR-CSE-01-20 31

Table 5: Classi�cation Model Results-Entire Data Set-Threshold 1

nN CI/CII Fit(Cross - Validation)

1 0.5 14.34% 13.68%

2 0.55 15.33% 14.43%

3 0.5 15.95% 15.17%

4 0.55 16.19% 15.92%

5 0.6 16.07% 15.92%

7 0.6 16.32% 16.92%

9 0.6 17.06% 18.66%

11 0.6 18.17% 17.91%

13 0.55 18.91% 20.15%

15 0.55 18.17% 19.40%

17 0.55 18.67% 19.15%

19 0.5 20.15% 19.65%

21 0.5 19.41% 19.90%

23 0.5 19.41% 20.15%

25 0.5 19.90% 20.40%

27 0.5 20.40% 19.90%

29 0.5 21.88% 19.90%

31 0.55 21.01% 22.39%

33 0.55 23.12% 22.14%

35 0.6 21.88% 23.88%

37 0.6 21.76% 24.38%

39 0.6 22.87% 22.14%

41 0.6 23.24% 25.62%

43 0.55 27.32% 23.38%

45 0.55 27.44% 25.62%

47 0.55 27.19% 27.86%

49 0.55 27.19% 28.61%

51 0.55 27.19% 28.61%

53 0.55 27.69% 29.10%

55 0.55 28.43% 31.59%

57 0.55 28.93% 31.59%

59 0.55 29.42% 31.59%

61 0.55 30.04% 31.59%

63 0.55 30.04% 31.59%

65 0.55 30.16% 31.59%

FAU Technical Report TR-CSE-01-20 32

Table 6: Evaluation of Entire Data Set-Threshold 1

Model (Cross-Validation)

Actual NFP FP TOTAL

NFP 693 116 809

85.66% 14.34% 100%

FP 55 347 402

13.68% 86.32% 100%

TOTAL 748 463 1211

PERCENT 61.77% 38.23% 100%

PRIOR 66.80% 33.20%

Table 6 provides the evaluation results for the optimum model. Using this model,

347/402 of the FP source �les are correctly classi�ed. Similarly, 693/809 of the NFP

source �les are correctly classi�ed. From this model, we would expect to classify 463

�les as being FP . This represents the sum of the �les that were correctly classi�ed as

FP , and the �les that were misclassi�ed as FP . If extra e�ort is invested in improvimg

the reliability of these 463 �les, then the fraction of the FP �les could be reduced from

402/1211 or 33.20% to 4.54% (0.3320 * 0.1368).

Classi�cation Experiment 2- Entire Data Set, Threshold 2: When Threshold 2

is used, 262 �les or 22% of the 1211 �les are deemed to be FP . The remaining 949 �les or

78% are deemed to be NFP . The same methodology used in Experiment 1 was followed.

Table 7 identi�es the cost ratios and their associated Type I and Type II misclassi�cation

FAU Technical Report TR-CSE-01-20 33

F au lt-P ron en ess T hr esh old = 2 .0

0.0 0%

1 0.0 0%

2 0.0 0%

3 0.0 0%

4 0.0 0%

5 0.0 0%

6 0.0 0%

7 0.0 0%

8 0.0 0%

9 0.0 0%

0 1 2 3 4 5 6

C ost R atio (C I/C II)

M
is

cl
as

si
fi

ca
ti

on

E
rr

or
 (%

)

T ype I

T ype II

T yp e I

T ype II

Figure 3: Type I and Type II Misclassi�cation Rates Per Cost Ratio- Threshold 2

rates where nN = 4. Figure 3 displays the tradeo� between the misclassi�cation rates as

a function of the cost ratio. Table 7 displays the model results for Experiment 2.

Table 7 indicates that for nN = 4, the optimum cost ratio is 0.45. Figure 3 shows

the inverse relationship between the misclassi�cation rates. Table 7 indicates that for

Threshold 2, the optimum model is nN = 4 and the cost ratio = 0.45.

The optimum model for Threshold 2, shows a Type I misclassi�cation rate of 13.91%

and a Type II misclassi�cation rate of 14.50%. Following the same analysis for Experi-

ment 1, and given a cost ratio of 0.45, a Type I misclassi�cation cost would be one unit,

and a Type II misclassi�cation cost would be 2.22 (1/0.45) units. Therefore, the actual

cost of a Type II misclassi�cation would be 3.22, which is 2.22 plus the one unit cost

of extra reviews. A perfect model for Threshold 2 would cost 262 units for review and

yield 844 (262*3.22) units in avoided debugging costs. When this model is compared

to the optimum model for Experiment 2, the expected cost of misclassi�cations would

be 216 (949*0.1391*1)+(262*0.1450*(3.22-1)) units. The cost of reviews would be 356

FAU Technical Report TR-CSE-01-20 34

Table 7: Cost Ratio Misclassi�cation where nN=4-Threshold 2

Fit(Cross - Validation)

Cost ratio CI/CII Type I Type II

0.0005 57.85% 1.91%

0.001 56.80% 1.91%

0.0015 55.95% 1.91%

0.002 54.37% 1.91%

0.0025 53.53% 1.91%

0.005 51.11% 1.91%

0.01 47.21% 1.91%

0.015 45.00% 1.91%

0.02 42.47% 2.29%

0.025 39.73% 2.29%

0.05 33.09% 3.82%

0.1 27.61% 6.11%

0.15 24.97% 8.02%

0.2 22.87% 9.16%

0.25 20.23% 10.31%

0.3 17.91% 11.45%

0.35 16.75% 13.36%

0.4 15.17% 14.50%

0.45 13.91% 14.50%

0.5 11.59% 16.41%

0.55 10.33% 17.94%

0.6 9.69% 19.47%

0.65 8.85% 20.61%

0.7 8.75% 24.43%

0.75 7.59% 26.72%

0.8 6.74% 28.24%

0.85 6.11% 31.30%

0.9 5.59% 33.21%

0.95 5.06% 35.88%

1 4.11% 38.55%

1.5 2.21% 50.38%

2 1.79% 62.60%

2.5 1.05% 70.23%

3 0.53% 73.66%

3.5 0.21% 76.34%

4 0.21% 77.10%

4.5 0.21% 77.10%

5 0.11% 77.48%

FAU Technical Report TR-CSE-01-20 35

Table 7: Classi�cation Model Results-Entire Data Set-Threshold 2

nN CI/CII Fit(Cross - Validation)

1 0.35 14.23% 15.27%

2 0.4 14.86% 15.65%

3 0.4 14.86% 14.89%

4 0.45 13.91% 14.50%

5 0.45 14.02% 15.27%

6 0.45 14.75% 15.65%

7 0.4 16.33% 14.89%

8 0.45 15.17% 16.79%

9 0.45 15.39% 16.41%

10 0.45 15.39% 16.41%

11 0.5 15.17% 16.03%

13 0.5 15.81% 16.79%

15 0.5 16.33% 16.79%

17 0.5 16.23% 16.79%

19 0.5 16.33% 16.79%

21 0.45 17.60% 16.03%

23 0.5 16.12% 17.56%

25 0.35 21.29% 20.23%

27 0.35 21.29% 21.76%

29 0.3 26.34% 21.76%

31 0.3 25.82% 23.28%

33 0.3 25.92% 23.28%

35 0.3 26.87% 24.05%

37 0.3 28.03% 27.48%

39 0.3 29.51% 27.10%

41 0.35 25.18% 30.53%

43 0.35 25.50% 28.63%

45 0.35 26.34% 28.24%

47 0.35 29.82% 27.48%

49 0.35 30.88% 27.48%

51 0.3 31.51% 27.10%

53 0.35 32.67% 28.24%

55 0.35 32.88% 27.86%

57 0.35 33.51% 28.24%

59 0.35 33.83% 27.48%

61 0.35 34.98% 27.48%

63 0.4 23.29% 31.30%

65 0.4 23.71% 31.30%

FAU Technical Report TR-CSE-01-20 36

Table 8: Evaluation of Entire Data Set-Threshold 2

Model (Cross-Validation)

Actual NFP FP TOTAL

NFP 817 132 949

86.09% 13.91% 100%

FP 38 224 262

14.50% 85.50% 100%

TOTAL 855 356 1211

PERCENT 70.60% 29.40% 100%

PRIOR 78.36% 21.64%

(949*0.1391*1) + (262*0.8550*1) units. The bene�t would be reliability improvement for

224 (262*0.8550) fault-prone �les, which might avoid 721 (224*3.22) units in debugging

costs later. The ROI is 721:356.

Table 8 provides the evaluation results for the optimum model. Using this model,

224/262 of the FP �les are correctly classi�ed. Similarly, 817/949 of the NFP �les are

correctly classi�ed. From this model, we would expect to classify 356 �les as being FP .

If extra e�ort is invested to improve the reliability of these 356 �les, then the fraction of

the FP �les could be reduced from 262/1211 or 21.64% to 3.13% (0.2164 * 0.1450).

Classi�cation Experiment 3- Entire Data Set, Threshold 3: When Threshold 3

is used, 200 �les or 17% of the 1211 �les are deemed to be FP . The remaining 1011 �les or

83% are deemed to be NFP . The same methodology used in Experiment 1 was followed.

FAU Technical Report TR-CSE-01-20 37

Table 9 identi�es the cost ratios and their associated Type I and Type II misclassi�cation

rates where nN = 6. Figure 4 displays the tradeo� between the misclassi�cation rates as

a function of the cost ratio. Table 9 displays the results for Experiment 3.

Table 9 indicates that for nN = 6, the optimum cost ratio is 0.40. Table 9 indicates

that for Threshold 3, the optimum model is where nN = 6 and the cost ratio equal to

0.40.

The optimum model for Threshold 3, shows a Type I misclassi�cation rate of 14.74%

and a Type II misclassi�cation rate of 14.00%. Following the same analysis for Exper-

iment 1, and given a cost ratio of 0.40, a Type I misclassi�cation cost would be one

unit, and a Type II misclassi�cation cost would be 2.50 (1/0.40) units. Therefore, the

actual cost of a Type II misclassi�cation would be 3.50, which is 2.50 plus the one unit

cost of extra reviews. A perfect model for Threshold 3 would cost 200 units for review

and yield 700 (200*3.5) units in avoided debugging costs. When this model is compared

to the optimum model for Experiment 3, the expected cost of misclassi�cations would

be 219 (1011*0.1474*1)+(200*0.1400*(3.50-1)) units. The cost of reviews would be 321

(1011*0.1474*1) + (200*0.8600*1) units. The bene�t would be reliability improvement

for 172 (200*0.8600) FP �les, which might avoid 602 (172*3.50) units in debugging costs

later. The ROI is 602:321. Table 10 provides the evaluation results for the optimum

model. Using this model, 172/200 of the FP source �les are correctly classi�ed. Sim-

ilarly, 862/1011 of the NFP source �les are correctly classi�ed. From this model, we

would expect to classify 321 �les as being FP . If extra e�ort is then invested to improve

the reliability of these 321 �les, then the fraction of the FP �les could be reduced from

172/1211 or 16.52% to 2.31% (0.1652 * 0.1400).

FAU Technical Report TR-CSE-01-20 38

Table 9: Cost Ratio Misclassi�cation where nN=6-Threshold 3

Fit(Cross - Validation)

Cost ratio CI/CII Type I Type II

0.0005 64.39% 0.50%

0.001 62.91% 0.50%

0.0015 61.52% 0.50%

0.002 59.94% 0.50%

0.0025 59.25% 0.50%

0.005 56.38% 0.50%

0.01 52.92% 0.50%

0.015 50.45% 1.00%

0.02 46.29% 1.00%

0.025 42.93% 1.50%

0.05 35.61% 2.00%

0.1 29.87% 4.00%

0.15 28.29% 5.50%

0.2 25.72% 7.50%

0.25 22.75% 9.00%

0.3 20.08% 11.00%

0.35 17.01% 12.50%

0.4 14.74% 14.00%

0.45 13.16% 15.00%

0.5 12.17% 17.50%

0.55 10.39% 20.50%

0.6 9.00% 24.00%

0.65 7.52% 26.50%

0.7 6.53% 31.50%

0.75 5.84% 33.00%

0.8 5.24% 34.50%

0.85 4.85% 36.50%

0.9 4.55% 38.00%

0.95 4.06% 40.50%

1 3.56% 41.50%

1.5 2.18% 55.50%

2 1.78% 72.00%

2.5 1.48% 75.50%

3 1.19% 78.00%

3.5 1.19% 80.00%

4 1.19% 81.00%

4.5 1.09% 82.00%

5 1.09% 82.50%

FAU Technical Report TR-CSE-01-20 39

Table 9: Classi�cation Model Results-Entire Data Set-Threshold 3

nN CI/CII Fit(Cross - Validation)

1 0.25 15.93% 16.50%

2 0.3 15.63% 14.50%

3 0.3 16.72% 13.50%

4 0.3 17.51% 13.50%

5 0.35 16.72% 15.50%

6 0.4 14.74% 14.00%

7 0.4 15.33% 13.50%

8 0.4 16.12% 13.50%

9 0.45 14.44% 16.00%

10 0.4 17.01% 13.00%

11 0.4 17.71% 15.00%

13 0.4 19.19% 14.00%

15 0.4 19.09% 16.00%

17 0.35 20.67% 19.50%

19 0.35 20.48% 19.50%

21 0.35 20.67% 19.50%

23 0.25 25.12% 22.50%

25 0.25 26.31% 24.50%

27 0.25 26.81% 25.00%

29 0.25 27.30% 25.00%

31 0.25 27.50% 25.00%

33 0.25 27.99% 25.00%

35 0.25 28.39% 25.00%

37 0.25 29.38% 27.00%

39 0.25 29.67% 27.00%

41 0.25 29.77% 27.00%

43 0.25 29.77% 27.00%

45 0.25 30.17% 26.50%

47 0.25 30.47% 26.50%

49 0.25 30.47% 26.00%

51 0.25 30.47% 26.00%

53 0.25 29.77% 26.00%

55 0.25 29.87% 27.50%

57 0.25 29.97% 27.50%

59 0.25 30.07% 27.50%

61 0.25 30.17% 27.50%

63 0.25 29.87% 27.50%

65 0.25 29.87% 27.50%

FAU Technical Report TR-CSE-01-20 40

F a u lt P r o n e n e s s T h r e s h o ld = 3 .0

0 .0 0 %

1 0 .0 0 %

2 0 .0 0 %

3 0 .0 0 %

4 0 .0 0 %

5 0 .0 0 %

6 0 .0 0 %

7 0 .0 0 %

8 0 .0 0 %

9 0 .0 0 %

1 0 0 .0 0 %

0 1 2 3 4 5 6

C o st R a t io (C I /C II)

M
is

cl
as

si
fi

ca
ti

on

 E
rr

or
 (

%
)

T yp e I

T yp e II

T y p e I

T yp e II

Figure 4: Type I and Type II Misclassi�cation Rates Per Cost Ratio- Threshold 3

Table 10: Evaluation of Entire Data Set-Threshold 3

Model (Cross-Validation)

Actual NFP FP TOTAL

NFP 862 149 1011

85.26% 14.74% 100%

FP 28 172 200

14.00% 86.00% 100%

TOTAL 890 321 1211

PERCENT 73.49% 26.51% 100%

PRIOR 83.48% 16.52%

FAU Technical Report TR-CSE-01-20 41

Table 11: Classi�cation Model Results-Entire Data Set Experiments

Threshold Type I Type 2 ROI Prior (%) Reduction (%)

Debug cost Fault-prone Fault-prone

1 14.34% 13.68% 1041:463 33.20% 4.54%

2 13.91% 14.50% 721:356 21.64% 3.13%

3 14.74% 14.00% 602:321 16.52% 2.13%

Classi�cation Experiments- Entire Data Set Results: Table 11 displays the re-

sults for the three classi�cation experiments conducted when the entire data set was

used to build the model, and cross-validation was used to validate the model. For each

of the thresholds, we obtained similar Type I and Type II misclassi�cation rates. In

addition, the ROI for each of the thresholds were also quite similar. If managers were

to implement any of the three classi�cation models, the percentage of FP source �les

could be reduced to less than 5%. In addition, they could expect to save anywhere from

47% ((602-321)/602) to 56% ((1041-460)/1041) in debugging costs. However, these ROI

�gures are only based on our modeling analysis. In reality, the actual ROI may be much

greater. This is attributed to the fact that a higher quality product could be delivered to

customers. Customer satisfaction would be greater which could help a company's market

share and image, and the cost of �xing faults late in the project would be minimized. In

addition, the actual cost of latent faults discovered by customers may be higher than the

costs obtained by our CBR modeling. These are just some of the bene�ts that allow the

ROI for building software quality models to be much greater.

FAU Technical Report TR-CSE-01-20 42

Classi�cation Experiments 4- Fit/Target Data Set, Threshold 1: The second

set of classi�cation experiments involved the use of a �t data set and a target data

(test data) set. Because the data set is split impartially, the usefulness of a model

can be impacted by how the data happened to be split. Therefore, in order to have

con�dence in the model results, several models should be built using di�erent data splits.

For our classi�cation experiments, we impartially split the data set 50 times and built

50 di�erent classi�cation models. All 50 models were validated using cross-validation

and data splitting. The misclassi�cation rate results for Threshold 1 using both model

validation techniques are tabulated in table 12, and the average misclassi�cation rates

and their standard deviations are provided as well. The same two parameters, cost ratio

and nN , were varied for each model. The cross-validation results were used to determine

the cost ratio and nN parameters for the models that were validated using data splitting.

The average Type I and Type II rates for the models validated using cross-validation

are 15.91% and 15.55%, respectively. The average Type I and Type II rates for the models

validated using data splitting are 15.75% and 16.37%, respectively. The average nN value

is 2.28, and the average cost ratio is 0.57. The results show values ranging from 1 to 9.

This indicates that this parameter should not be �xed at a predetermined value. Instead,

nN should be chosen empirically for each case. The cost ratio parameter is more uniform

than the nN value, which is evident by the small standard deviation.

Classi�cation Experiments 5- Fit/Target Data Set, Threshold 2: Table 12

displays the results for all 50 models for Threshold 2. The average Type I and Type

II misclassi�cation rates for the models validated using cross-validation are 15.09% and

14.71%, respectively. The average Type I and Type II misclassi�cation rates for the

FAU Technical Report TR-CSE-01-20 43

models validated using data splitting are 15.08% and 16.19%, respectively. The average

nN value is 2.10, and the average cost ratio is 0.40. The results show nN values ranging

from 1 to 7, which is similar to Classi�cation Experiment 4, indicates that the parameter

should be chosen empirically to obtain the optimum model for each case.

Classi�cation Experiments 6- Fit/Target Data Set, Threshold 3: Table 12

displays the results for all 50 models for Threshold 3. The average Type I and Type

II misclassi�cation rates for the models validated using cross-validation are 15.65% and

15.28%, respectively. The average Type I and Type II misclassi�cation rates for the

models validated using data splitting are 15.08% and 16.55%, respectively. The average

nN value is 3.16, and the average cost ratio is 0.37. For Threshold 3, the nN values range

from 1 to 5. The standard deviation for the cost ratio parameter is 0.054.

Classi�cation Experiments - All Experiments Results: Table 12 summarizes the

results from the six classi�cation experiments conducted. Splitting the data set into a �t

data set and a target data set further validated the models built from the independent

variables selected in our study. Data splitting o�ers the ability to simulate the use of the

model in practice because the target data set can represent data from subsequent releases.

50 models were built to ensure that the results obtained were due to accurate modeling

instead of a fortunate data split. The data splitting results were quite similar to the

cross-validation results which provides additional con�dence that successful classi�cation

models were built. The Type II errors were a bit higher for the models validated using

data splitting, but the di�erence is not signi�cant. The cross-validation results from the

entire data set was also quite similar to the cross-validation results which used 2/3 of

FAU Technical Report TR-CSE-01-20 44

Table 12: Classi�cation Model Results-Fit/Target Data Set-Threshold 1

Data Set nN CI/CII Fit(Cross Validation) Target(Test)

Type I Type II Type I Type II

1 4 0.6 16.14% 16.79% 14.44% 13.43%

2 1 0.5 14.47% 14.93% 18.52% 15.67%

3 1 0.6 16.51% 16.79% 17.41% 14.93%

4 1 0.6 16.51% 16.79% 17.41% 14.93%

5 2 0.6 13.57% 13.38% 14.39% 22.56%

6 6 0.6 16.33% 16.79% 18.52% 20.15%

7 3 0.5 15.77% 14.18% 14.44% 14.18%

8 9 0.6 17.22% 16.11% 17.47% 18.52%

9 2 0.6 15.58% 13.81% 18.89% 14.93%

10 2 0.55 14.60% 15.04% 15.30% 18.38%

11 3 0.6 15.86% 15.87% 19.41% 12.98%

12 5 0.6 16.24% 15.85% 15.36% 21.17%

13 1 0.55 17.07% 16.05% 9.63% 13.43%

14 1 0.55 15.80% 15.24% 17.71% 18.05%

15 2 0.6 15.86% 16.24% 16.48% 14.50%

16 2 0.55 16.27% 16.54% 12.31% 12.50%

17 1 0.55 16.36% 16.35% 14.34% 20.14%

18 1 0.55 17.25% 16.05% 11.48% 14.18%

19 2 0.55 14.31% 14.13% 18.08% 18.05%

20 1 0.55 16.79% 15.87% 16.12% 18.32%

21 1 0.55 16.57% 15.56% 13.97% 14.39%

22 3 0.6 16.57% 15.56% 11.11% 20.98%

23 1 0.5 15.71% 16.17% 15.67% 11.77%

24 1 0.55 15.46% 14.07% 15.44% 21.97%

25 1 0.6 17.07% 17.15% 13.41% 13.28%

26 2 0.5 13.92% 13.41% 16.73% 15.60%

27 5 0.65 16.30% 15.33% 12.93% 24.82%

28 2 0.55 15.77% 14.93% 15.56% 13.43%

29 3 0.55 16.36% 14.13% 20.30% 12.78%

30 1 0.5 16.24% 15.47% 17.23% 14.60%

31 1 0.5 16.24% 15.47% 21.72% 18.25%

32 2 0.6 14.60% 15.04% 12.31% 22.06%

33 2 0.55 16.61% 15.47% 16.61% 15.47%

34 2 0.6 15.95% 14.60% 12.68% 19.53%

35 1 0.55 16.24% 16.60% 13.70% 12.69%

36 1 0.55 14.63% 15.73% 13.38% 16.30%

37 4 0.55 15.75% 15.71% 20.91% 19.15%

38 2 0.6 15.95% 15.69% 13.77% 14.84%

39 1 0.6 16.57% 17.41% 18.38% 13.64%

40 3 0.55 17.64% 16.79% 19.12% 12.88%

41 3 0.6 18.11% 16.25% 14.34% 11.20%

42 5 0.55 16.06% 16.22% 18.39% 18.88%

43 2 0.55 15.57% 14.96% 15.22% 17.97%

44 1 0.5 15.31% 15.09% 14.23% 15.33%

45 5 0.6 14.95% 15.09% 17.23% 16.79%

46 2 0.6 15.61% 15.24% 15.87% 19.55%

47 2 0.6 16.36% 15.59% 13.21% 17.27%

48 2 0.6 15.95% 15.69% 13.77% 14.84%

49 2 0.55 14.89% 15.21% 17.33% 10.24%

50 1 0.55 14.15% 15.21% 15.09% 17.27%

Average 2.28 0.57 15.91% 15.55% 15.75% 16.37%

STD 1.629 0.037 0.95% 0.94% 2.62% 3.30%

FAU Technical Report TR-CSE-01-20 45

Table 12: Classi�cation Model Results-Fit/Target Data Set-Threshold 2

Data Set nN CI/CII Fit(Cross Validation) Target(Test)

Type I Type II Type I Type II

1 1 0.4 15.19% 14.86% 15.77% 13.79%

2 2 0.4 13.74% 14.37% 16.46% 22.73%

3 3 0.45 12.95% 12.64% 13.29% 19.32%

4 2 0.45 13.90% 14.94% 13.29% 20.46%

5 2 0.35 15.82% 16.00% 14.51% 14.94%

6 2 0.45 13.63% 14.21% 16.04% 16.28%

7 1 0.35 15.48% 15.52% 14.56% 14.77%

8 2 0.4 14.40% 14.29% 13.57% 19.46%

9 1 0.4 14.53% 14.94% 14.87% 11.36%

10 1 0.4 14.29% 14.12% 17.24% 16.47%

11 3 0.4 16.43% 14.94% 15.19% 13.64%

12 1 0.35 14.49% 13.37% 14.65% 13.33%

13 7 0.45 17.35% 16.19% 14.92% 13.48%

14 1 0.4 14.01% 13.97% 18.38% 15.66%

15 1 0.35 15.37% 14.77% 15.72% 16.28%

16 1 0.35 15.64% 15.52% 16.46% 18.18%

17 1 0.4 14.69% 12.64% 14.87% 18.18%

18 3 0.4 17.09% 16.57% 12.93% 14.94%

19 2 0.45 11.57% 10.80% 16.35% 24.42%

20 2 0.35 16.35% 14.62% 16.61% 15.39%

21 3 0.45 13.97% 15.29% 15.39% 13.04%

22 1 0.3 14.96% 15.12% 16.88% 13.33%

23 2 0.4 13.61% 14.29% 14.83% 19.54%

24 2 0.4 14.44% 14.77% 16.04% 18.61%

25 3 0.4 15.24% 13.56% 12.23% 17.65%

26 2 0.4 13.52% 13.45% 16.29% 23.08%

27 2 0.4 15.13% 14.46% 11.04% 18.75%

28 3 0.4 16.93% 16.57% 14.51% 9.20%

29 4 0.45 15.56% 15.82% 16.30% 15.29%

30 1 0.3 16.77% 15.39% 18.97% 7.53%

31 3 0.45 14.83% 14.44% 13.98% 15.85%

32 2 0.4 15.14% 16.19% 13.02% 22.47%

33 2 0.4 13.90% 14.94% 18.04% 14.77%

34 1 0.4 16.48% 17.05% 12.89% 17.44%

35 3 0.4 16.09% 15.03% 11.43% 11.24%

36 1 0.4 15.24% 14.69% 13.79% 15.29%

37 1 0.35 14.38% 13.77% 15.21% 18.95%

38 2 0.4 15.31% 14.44% 14.91% 14.63%

39 1 0.35 15.32% 15.52% 16.46% 14.77%

40 1 0.4 15.39% 13.53% 13.78% 18.48%

41 2 0.35 16.19% 14.12% 14.42% 12.94%

42 6 0.45 14.51% 14.45% 17.46% 21.35%

43 2 0.4 16.22% 14.61% 15.31% 11.91%

44 1 0.4 13.92% 14.29% 15.14% 20.69%

45 2 0.4 16.19% 16.95% 14.42% 14.12%

46 3 0.4 15.53% 14.47% 14.47% 19.77%

47 1 0.4 15.19% 15.43% 14.20% 14.94%

48 2 0.35 14.51% 14.45% 16.83% 12.36%

49 3 0.4 16.69% 15.70% 15.61% 12.22%

50 4 0.4 16.30% 13.50% 14.57% 16.16%

Average 2.1 0.4 15.09% 14.71% 15.08% 16.19%

STD 1.249 0.037 1.17% 1.15% 1.66% 3.62%

FAU Technical Report TR-CSE-01-20 46

Table 12: Classi�cation Model Results-Fit/Target Data Set-Threshold 3

Data Set nN CI/CII Fit(Cross Validation) Target(Test)

Type I Type II Type I Type II

1 2 0.3 15.13% 14.29% 15.13% 14.93%

2 3 0.4 14.86% 15.67% 18.34% 19.70%

3 3 0.35 14.96% 14.39% 13.99% 16.18%

4 2 0.35 14.67% 15.91% 13.39% 20.59%

5 4 0.45 14.71% 13.43% 13.02% 24.24%

6 5 0.4 16.02% 17.29% 14.54% 13.43%

7 3 0.35 16.02% 14.29% 14.84% 19.40%

8 3 0.35 16.62% 14.29% 14.84% 17.91%

9 3 0.35 16.00% 15.91% 15.77% 10.29%

10 2 0.35 12.84% 13.87% 16.13% 17.46%

11 3 0.35 17.75% 17.56% 15.22% 14.49%

12 3 0.45 11.72% 12.03% 14.84% 22.39%

13 3 0.35 15.90% 17.91% 13.91% 9.09%

14 3 0.4 14.78% 16.06% 16.42% 12.70%

15 2 0.3 15.24% 15.27% 15.82% 17.39%

16 1 0.25 17.06% 16.54% 17.22% 17.81%

17 3 0.4 14.18% 13.87% 15.25% 19.05%

18 5 0.45 14.24% 14.29% 12.46% 20.90%

19 5 0.4 16.87% 13.87% 13.78% 12.70%

20 1 0.3 14.92% 16.15% 15.27% 20.00%

21 2 0.35 17.67% 16.41% 15.36% 11.11%

22 3 0.4 15.88% 14.29% 15.43% 11.94%

23 3 0.35 16.79% 14.93% 17.46% 18.18%

24 4 0.4 14.52% 14.39% 16.96% 16.18%

25 4 0.4 14.67% 15.91% 13.69% 20.59%

26 4 0.4 15.73% 13.53% 15.73% 20.90%

27 1 0.3 15.17% 14.84% 13.25% 20.83%

28 5 0.4 18.69% 17.29% 16.02% 7.46%

29 4 0.4 17.26% 16.30% 15.63% 9.23%

30 5 0.4 15.42% 14.29% 14.24% 17.57%

31 3 0.4 15.44% 14.29% 15.12% 11.67%

32 3 0.35 15.13% 15.79% 14.54% 19.40%

33 1 0.25 15.73% 16.54% 18.99% 13.43%

34 5 0.45 15.90% 15.67% 10.65% 19.70%

35 2 0.3 17.16% 16.03% 13.73% 14.49%

36 4 0.45 14.44% 14.82% 11.21% 16.29%

37 2 0.35 15.68% 13.74% 15.82% 18.84%

38 5 0.45 15.74% 15.71% 14.54% 18.33%

39 3 0.3 17.83% 15.67% 18.94% 9.09%

40 4 0.45 16.02% 15.04% 12.76% 13.43%

41 3 0.35 17.39% 18.66% 14.79% 21.21%

42 2 0.35 13.08% 14.93% 15.39% 25.76%

43 4 0.4 16.62% 14.29% 15.73% 14.93%

44 2 0.35 13.76% 14.50% 14.03% 15.94%

45 4 0.45 14.88% 15.56% 12.98% 16.92%

46 4 0.35 18.48% 16.91% 15.88% 14.06%

47 3 0.4 13.13% 15.33% 15.25% 11.11%

48 1 0.25 17.66% 16.54% 20.48% 17.91%

49 4 0.4 15.46% 14.84% 13.55% 22.22%

50 5 0.4 16.64% 14.06% 15.66% 18.06%

Average 3.16 0.37 15.65% 15.28% 15.08% 16.55%

STD 1.201 0.054 1.46% 1.30% 1.84% 4.21%

FAU Technical Report TR-CSE-01-20 47

Table 12: Classi�cation Model Results-All Experiments

T Cross-Validation Cross-Validation Data Splitting Average

Entire Data Set Fit/Target Fit/Target

Type I Type II Type I Type II Type I Type II nN CI/CII

1 14.34% 13.68% 15.91% 15.55% 15.75% 16.37% 2.28 0.57

2 13.91% 14.50% 15.09% 14.71% 15.08% 16.19% 2.10 0.40

3 14.74% 14.00% 15.65% 15.28% 15.08% 16.55% 3.16 0.37

the data set as the �t data set. In addition, the results were similar for the three fault-

proneness thresholds. This indicates that our classi�cation models were not sensitive to

the particular fault-proneness thresholds chosen in our research.

3.6 Prediction Experiments

There were two prediction experiments conducted in our �rst case study. The �rst exper-

iment involved the entire data set and the models were validated using cross-validation.

The second experiment involved the use of a �t data set and a separate target data set

for building and validating the models. Once again, data from subsequent releases was

not available during our research. Therefore, a �t data set and a target data set were

derived from the single data set available. Similar to our classi�cation experiments, the

�t data set comprised 2/3 of the observations, and the target data set comprised 1/3 of

the observations. The models built in our second experiment were validated by cross-

validation using the �t data set and by data splitting using the target data (test data)

set.

FAU Technical Report TR-CSE-01-20 48

Based on the CBR methodology stated earlier, the following describes the charac-

teristics of our prediction models:

1. A �t data set is speci�ed as the case library. For the �rst experiment, the �t data

set is the entire data set. For the second experiment, the �t data set is 2/3 of the

entire data set.

2. A target data set is speci�ed for model validation. For the �rst experiment, the

target data set is the same as the �t data set. For the second experiment, the target

data set is 1/3 of the entire data set.

3. A similarity function is selected. We selected Mahalonobis Distance.

4. The number of cases is selected. The model with the optimum results dictates the

optimum value for the number of cases, nN .

5. For prediction models, the solution algorithm is selected. We selected Inverse-

Distance Weighted Average.

6. The models are evaluated for accuracy. We used Average Absolute Error (AAE)

and Average Relative Error (ARE).

For prediction models, the only parameter to ascertain is nN . In previous re-

search [22], the optimum model is determined by analyzing the AAE results. By in-

creasing values of nN , a trend in the AAE values will appear. The AAE values for each

succeeding nN will decrease until they reach a particular nN value. At that point, the

AAE values will begin to increase. The model at this value of nN , having a minimal

AAE is selected as the optimum model.

FAU Technical Report TR-CSE-01-20 49

Prediction Experiment 1 - Entire Data Set: The Mahalonobis Distance similar-

ity function is used to determine the distance from the current case to the cases in the

case library. The distance measures are then used in a solution algorithm to obtain the

estimated value for the dependent variable. In our case study, we selected the Inverse-

Distance Weighted Average solution algorithm because previous research [22], indicates

that this solution algorithm has better predictive accuracy than the other solution algo-

rithms available. This research also shows that the Mahalonobis Distance also performs

better than the other similarity functions available. Table 13 displays the prediction

model results for the entire data set.

The optimummodel is determined via Table 13. Following the AAE column, the best

model is selected when the AAE values decrease until it reaches its minimum, at which

point it starts to increase. This indicates that our optimum model is where nN equals

13. An AAE value of 1.072 indicates that the model correctly predicted the number of

faults discovered in each source �le during system test to within 1.072 faults.

Prediction Experiment 2 - Fit/Target Data Set: The prediction experiment in-

volving a �t data set and a target set was validated using cross-validation and data

splitting. 50 models were built to ensure the results obtained were due to accurate mod-

eling instead of a fortunate data split. Table 14 displays the results for all 50 models.

The average AAE and ARE values for the models validated using cross-validation

are 1.098 and 0.297, respectively. The average AAE and ARE values for the models

validated using data splitting are 1.115 and 0.290, respectively. The standard deviations

for the models validated using data splitting are similar to those validated using cross-

validation. The average nN value is 10.24. The results show nN values ranging from 3 to

FAU Technical Report TR-CSE-01-20 50

25. Similar to the classi�cation experiments, this indicates that this parameter should

not be �xed at a predetermined value. Instead, nN should be chosen empirically for each

case in order to build an optimum model.

Prediction Experiments- Results: Table 14 summarizes the results from the two

prediction experiments conducted. Preliminary research on CBR using City Block Dis-

tance showed that CBR provided better accuracy than the corresponding multiple linear

regression models [18] for predicting faults [3]. Another study was performed on the use

of the Euclidean Distance with CBR classi�cation models [11] which also provided good

results when compared to models built using nonparametric discriminant analysis [15].

Subsequent research on CBR has shown that the Mahalonobis Distance yields better

performance accuracy with raw data sets than other distance measures such as City-

Block Distance and Euclidean Distance [22]. This research provides additional support

for the use of CBR as a viable modeling methodology for software quality control. Our

results indicate that successful models were built with the independent variables selected.

Each experiment revealed that our models are capable of predicting the number of faults

discovered in each source �le during system test to within one fault.

4 Empirical Case Study 2

This section will �rst describe the system used for our second empirical study. The

di�erent metrics collected will be highlighted and then the results will be presented.

FAU Technical Report TR-CSE-01-20 51

Table 13: Prediction Model Results-Entire Data Set

nN Fit (Cross-Validation)

AAE ARE

1 1.078 0.284

3 1.137 0.296

5 1.084 0.288

7 1.077 0.286

9 1.081 0.285

11 1.078 0.282

12 1.075 0.281

13 1.072 0.279

14 1.073 0.279

15 1.08 0.279

17 1.083 0.278

19 1.084 0.277

21 1.084 0.275

23 1.084 0.275

25 1.084 0.274

27 1.085 0.273

29 1.088 0.272

31 1.091 0.272

33 1.093 0.271

35 1.095 0.271

37 1.097 0.27

39 1.098 0.269

41 1.101 0.268

43 1.103 0.268

45 1.105 0.268

47 1.107 0.267

49 1.109 0.267

51 1.111 0.267

53 1.113 0.266

55 1.115 0.266

57 1.117 0.266

59 1.118 0.265

61 1.119 0.264

63 1.12 0.264

65 1.122 0.263

FAU Technical Report TR-CSE-01-20 52

Table 14: Prediction Model Results-Fit/Target Data Set

Data Set nN Fit(Cross Validation) Target(test)

AAE ARE AAE ARE

1 8 1.129 0.31 1.09 0.286

2 7 1.098 0.271 1.008 0.271

3 7 1.158 0.318 1.11 0.318

4 13 1.003 0.299 1.257 0.265

5 9 1.134 0.285 1.013 0.26

6 6 1.139 0.316 1.1 0.317

7 9 1.063 0.309 1.164 0.273

8 20 1.107 0.284 1.133 0.278

9 21 1.096 0.298 1.168 0.281

10 9 1.108 0.296 1.088 0.322

11 9 1.134 0.314 1.03 0.273

12 11 0.966 0.279 1.298 0.272

13 21 1.162 0.297 1.048 0.269

14 12 1.053 0.3 1.233 0.304

15 4 1.046 0.288 1.205 0.338

16 5 1.196 0.312 0.902 0.244

17 15 1.05 0.275 1.175 0.301

18 23 1.238 0.318 0.899 0.24

19 4 0.937 0.266 1.447 0.385

20 18 1.027 0.294 1.25 0.284

21 7 1.076 0.3 1.198 0.309

22 9 0.987 0.28 1.22 0.262

23 5 1.077 0.29 1.195 0.326

24 10 1.147 0.28 1.005 0.306

25 5 1.126 0.326 1.051 0.259

26 4 1.115 0.266 0.99 0.309

27 9 0.99 0.302 1.288 0.263

28 11 1.143 0.29 0.981 0.292

29 9 1.103 0.304 1.185 0.294

30 3 1.046 0.318 1.163 0.289

31 14 1.19 0.3 1.02 0.287

32 7 1.174 0.309 0.912 0.232

33 23 1.071 0.274 1.293 0.319

34 14 1.151 0.295 0.971 0.263

35 8 1.19 0.324 0.975 0.265

36 8 1.12 0.288 1.007 0.265

37 8 1.052 0.297 1.252 0.335

38 7 1.096 0.302 0.989 0.3

39 11 1.163 0.296 1.038 0.31

40 9 0.996 0.299 1.263 0.308

41 25 1.21 0.303 1.004 0.255

42 5 1.037 0.287 1.285 0.354

43 9 1.091 0.304 1.123 0.288

44 7 1.154 0.304 0.981 0.288

45 8 1.134 0.305 1.055 0.269

46 8 1.157 0.287 0.958 0.308

47 5 0.979 0.302 1.342 0.282

48 15 1.18 0.3 0.932 0.289

49 9 0.944 0.307 1.478 0.303

50 9 1.145 0.281 0.968 0.292

Average 10.24 1.098 0.297 1.115 0.29

STD 5.44 0.072 0.014 0.141 0.029

FAU Technical Report TR-CSE-01-20 53

Table 14: Prediction Model Result

Cross validation(Entire Data Set) Cross validation(Fit) Data Splitting(Fit) Average # of cases

AAE ARE AAE ARE AAE ARE nN

1.072 0.279 1.098 0.297 1.115 0.290 10.24

4.1 System description

The system is exactly the same as the one used and presented in the previous section

describing our �rst case study.

4.2 Data Collection E�ort in Case Study 2

For our second case study regarding the fault removal process, we primarily used the

problem reporting database to obtain a list of the faults discovered during system test.

Through this database, we were able to directly obtain most of the metrics used in our

study. The only exception was PR FIX LOC, which is the number of lines of code for a

collection of �les before a fault-�x. This metric was not captured directly in the database.

Therefore, an internally developed line count tool was used to determine this information.

Once the data selection process was complete, the data was preprocessed and cleaned.

This step is necessary to remove any outliers or illogical data points. An outlier is an

instance which values are by far out of the usual range for some variables.

Table 15 gives the list of product and process metrics used in our second case study.

FAU Technical Report TR-CSE-01-20 54

Table 15: Product and Process Metrics for Case Study 2

Product Metrics Description

FILES FIX Number of source �les modi�ed to �x a fault.

PR FIX LOC Number of lines of code, before the �x, for the

collection of source �les modi�ed to �x the fault.

CODE CHRN Number of lines of code modi�ed by the developer

within the collection of source �les modi�ed to �x. This is

the summation of the lines added, deleted or modi�ed.

PO FIX LOC Number of lines of code, after the �x, for the collection

of source �les modi�ed to �x the fault.

Process Metrics Description

FIX HRS Time, in hours, spent by developers to �x the fault.

4.3 Case Study 2 Description

Case Study 2 analyzes our second data set that contains data on faults found during

system test. After the data set was preprocessed and cleaned, 230 observations remained.

In this particular case study, an observation is a fault discovered during system test and

its associated fault removal metrics. One process metric and four product metrics were

used as independent variables. The �ve metrics are described in Table 15. Once again,

data reduction or transformation techniques were not necessary. This set of metrics will

be referred to as RAW FAULT FIXES-5. The correlations among the �ve independent

variables are shown in table 16. The dependent variable in this second case study is the

FAU Technical Report TR-CSE-01-20 55

Table 16: Correlation Statistics for RAW FILES � 5

CORRELATION FIX HRS PR FIX LOC CODE CHRN PO FIX LOC FILES FIX

FIX HRS 1.00 0.1674 0.1193 0.1696 0.1605

PR FIX LOC 1.00 0.3821 0.9996 0.3842

CODE CHRN 1.00 0.3943 0.3783

PO FIX LOC 1.00 0.3884

FILES FIX 1.00

outcome of a fault-�x inspection.

While the �rst case study seeks to identify fault-prone areas to guide reliability en-

hancement e�orts, this second case study analyzes the e�ectiveness of the organization's

fault removal process to provide an opportunity for resource allocation improvements.

4.4 Case Study 2 Methodology

This second case study involved building a software quality classi�cation model to predict

the outcome of a fault-�x inspection. This allows managers the opportunity to assess the

e�ectiveness of their organization's fault removal process. There are many reasons why

managers would want to improve their software processes and quality. These include

a moral obligation, customer satisfaction, cost e�ectiveness, predictability, application

demand, and international competition. In particular, the cost of labor has become a

major factor in software development costs. By improving the development processes,

managers can make more e�cient use of personnel resources. This classi�cation model

FAU Technical Report TR-CSE-01-20 56

was validated using cross-validation. Because the data set was relatively small, validation

by data splitting was not appropriate.

The following steps describe the modeling methodology used in our second case

study for our classi�cation model:

1. Collect con�guration management and problem reporting data from a past project.

2. Preprocess and clean the data.

3. Identify the following: the list of independent variables and the dependent variable.

We identi�ed �ve independent variables, and our dependent variable is the outcome

of a fault-�x inspection.

4. For classi�cation modeling: Determine the class of each observation. The classi�-

cation is as follows:

Class =

8>><
>>:

REJECT ; if Outcome = 1

ACCEPT; otherwise

(20)

ACCEPT will accept the inspection for the fault-�x, while REJECT will require

re-work to be performed. An Outcome equal to 1 indicates that the inspection was

necessary in order to reveal issues with the fault-�x.

5. Prepare the �t and target data (test data) sets. A �t data set is used to build the

model, and a target data set is used to validate the model.

6. Select a modeling methodology and build the model. We used CBR. The models

were validated and evaluated for their accuracy. We validated the models using

cross-validation.

FAU Technical Report TR-CSE-01-20 57

4.5 Classi�cation Experiments

Based on the CBR methodology described in section 2, the following are the character-

istics of our classi�cation model for Case Study 2:

1. A �t data set is speci�ed as the case library. The �t data set is the entire data set

of faults discovered by system test.

2. A target data set is speci�ed for model validation. The target data set is the same

as the �t data set.

3. A similarity function is selected. We selected Mahalonobis Distance.

4. The number of cases is selected. The model with the optimum results dictates the

optimum value for the number of cases, nN .

5. For classi�cation models, the classi�cation method is selected. We selected Data

Clustering.

6. The models are evaluated for accuracy. We used Type I and Type II misclassi�ca-

tion rates.

In addition, the cost ratio parameter was varied, and the cost ratio that yielded

the most balanced misclassi�cation rates was selected for each nN . When the previously

stated classi�cation is used, 19/230 fault-�xes or 8.26% are classi�ed as REJECT . The

remaining 211/230 fault-�xes or 91.74% are classi�ed as ACCEPT . The same method-

ology used in the �rst case study for the classi�cation experiments was followed. Table 17

identi�es the cost ratios and their associated Type I and Type II misclassi�cation rates

where nN = 6. Figure 5 displays the tradeo� between the misclassi�cation rates as a

F
A
U

T
ech

n
ica

l
R
ep
o
rt

T
R
-C
S
E
-0
1
-2
0

5
8

0.0
0%

2
0.0

0%

4
0.0

0%

6
0.0

0%

8
0.0

0%

10
0.0

0%

12
0.0

0%

0.00
0.10

0.20
0.30

0
.40

0.5
0

0.60
0.70

0.80
0.90

1
.00

1.10

C
ost R

atio (C
I /C

II)

Misclassification
 Error (%)

T
ype I

T
ype II

T
yp

e II

T
yp

e I

F
ig
u
re

5
:
T
y
p
e
I
a
n
d
T
y
p
e
II
M
iscla

ssi�
ca
tio

n
R
a
tes

P
er

C
o
st
R
a
tio

-
T
h
resh

o
ld

2

fu
n
ctio

n
o
f
th
e
co
st

ra
tio

.
T
a
b
le
1
8
d
isp

lay
s
th
e
m
o
d
el
resu

lts
fo
r
th
is
ca
se

stu
d
y.

T
a
-

b
le
1
7
in
d
ica

tes
th
a
t
fo
r
n
N
=
6
,
th
e
o
p
tim

u
m

co
st
ra
tio

is
0
.1
5
.
T
a
b
le
1
8
in
d
ica

tes
th
a
t

th
e
o
p
tim

u
m

m
o
d
el
is
n
N
=
6
a
n
d
th
e
co
st
ra
tio

=
0
.1
5
.

T
h
e
T
y
p
e
I
a
n
d
T
y
p
e
II
m
iscla

ssi�
ca
tio

n
ra
tes

a
re

3
4
.1
2
%

a
n
d
2
1
.0
5
%
,
resp

ectiv
ely.

F
o
llow

in
g
th
e
sa
m
e
a
n
a
ly
sis

a
s
in

th
e
�
rst

ca
se

stu
d
y,

a
n
d
g
iv
en

a
co
st

ra
tio

o
f
0
.1
5
,
a

T
y
p
e
I
m
iscla

ssi�
ca
tio

n
co
st
w
o
u
ld
b
e
o
n
e
u
n
it,

a
n
d
a
T
y
p
e
II
m
iscla

ssi�
ca
tio

n
co
st
w
o
u
ld

b
e
6
.6
7
(1
/
0
.1
5
)
u
n
its.

T
h
erefo

re,
th
e
a
ctu

a
l
co
st

o
f
a
T
y
p
e
II

m
iscla

ssi�
ca
tio

n
w
o
u
ld

b
e
7
.6
7
,
w
h
ich

is
6
.6
7
p
lu
s
th
e
o
n
e
u
n
it
co
st

o
f
ex
tra

rev
iew

s.
A

p
erfect

m
o
d
el
w
o
u
ld

co
st
1
9
u
n
its

fo
r
rev

iew
a
n
d
y
ield

1
4
6
(1
9
*
7
.6
7
)
u
n
its

in
av
o
id
ed

in
sp
ectio

n
co
sts.

W
h
en

th
is
p
erfect

m
o
d
el
is
co
m
p
a
red

to
th
e
m
o
d
el
b
u
ilt,

th
e
ex
p
ected

co
st
o
f
m
iscla

ssi�
ca
tio

n
s

w
o
u
ld

b
e
9
8
(2
1
1
*
0
.3
4
1
2
*
1
)+

(1
9
*
0
.2
1
0
5
*
(7
.6
7
-1
))
u
n
its.

T
h
e
co
st

o
f
rev

iew
s
w
o
u
ld

b
e

8
7
(2
1
1
*
0
.3
4
1
2
*
1
)
+
(1
9
*
0
.7
8
9
5
*
1
)
u
n
its.

T
h
e
b
en
e�
t
w
o
u
ld

b
e
relia

b
ility

im
p
rov

em
en
t

fo
r
1
5
(1
9
*
0
.7
8
9
5
)
fa
u
lt-�

x
es,

w
h
ich

m
ig
h
t
av
o
id

1
1
5
(1
5
*
7
.6
7
)
u
n
its

in
in
sp
ectio

n
co
sts

la
ter.

T
h
e
R
O
I
is
1
1
5
:8
7
.

FAU Technical Report TR-CSE-01-20 59

Table 19 provides the evaluation results for the optimum model. Using this model,

15/19 fault-�x inspection outcomes are correctly classi�ed as REJECT . Similarly,

139/211 fault-�x inspection outcomes are correctly classi�ed as ACCEPT . From this

model, we would expect to classify 87 fault-�x inspection outcomes as REJECT . If ex-

tra e�ort is invested to improve the reliability of these 87 fault-�xes, then the fraction of

the inspections classi�ed as REJECT could be reduced from 19/230 or 8.26% to 1.74%

(0.0826 * 0.2105).

4.6 Classi�cation Experiments- Results

If managers were to implement this classi�cation model, they could expect to save 24%

((115-87)/115) in inspection costs. The current fault removal process provides indepen-

dent veri�cation by system test for all faults logged. As a result, even if a model had

a somewhat unsatisfying Type II misclassi�cation rate, the current process would catch

the fault-�xes that should have been inspected. Therefore, quality models should be used

to allow a more e�cient use of time and resources. Also, it has been proven that the

cost of diagnosing and correcting faults late in development is much greater than when

�nding the faults early [14]. Therefore, the use of software quality models can be quite

advantageous in this respect.

Using this model, 139 fault-�x inspections that resulted in an outcome of ACCEPT ,

were correctly classi�ed. This indicates that managers would be able to save time and

resources by not performing 139 inspections, which would have yielded no errors. 15

inspections would be performed, and these 15 would reveal errors in the fault-�xes. In

addition, 72 fault-�x inspections would have been conducted on fault-�xes that should

FAU Technical Report TR-CSE-01-20 60

Table 17: Cost Ratio Misclassi�cation where nN = 6.

nN Fit (Cross-Validation)

AAE ARE

0.0005 100.00% 0.00%

0.001 97.63% 0.00%

0.002 97.16% 0.00%

0.0025 97.16% 0.00%

0.005 91.94% 0.00%

0.01 85.31% 5.26%

0.02 72.99% 10.53%

0.025 71.56% 10.53%

0.05 59.24% 15.79%

0.1 42.18% 21.05%

0.15 34.12% 21.05%

0.16 33.65% 26.32%

0.165 32.70% 36.84%

0.17 32.70% 42.11%

0.18 31.75% 42.11%

0.19 30.81% 47.37%

0.2 30.81% 52.63%

0.25 21.80% 63.16%

0.3 18.01% 63.16%

0.35 14.22% 68.42%

0.4 12.32% 68.42%

0.45 10.90% 78.95%

0.5 8.53% 84.21%

0.55 6.64% 84.21%

0.6 4.74% 84.21%

0.65 3.79% 89.47%

0.7 3.32% 89.47%

0.75 0.47% 89.47%

0.8 0.47% 89.47%

0.85 0.47% 89.47%

0.9 0.47% 89.47%

0.95 0.00% 94.74%

1 0.00% 100.00%

FAU Technical Report TR-CSE-01-20 61

Table 18: Classi�cation Model Results-Entire Data Set

nN CI/CII Fit(Cross Validation)

Type I Type II

1 0.25 41.23% 26.32%

2 0.2 39.34% 21.05%

3 0.15 45.02% 21.05%

4 0.15 39.81% 21.05%

5 0.15 37.44% 21.05%

6 0.15 34.12% 21.05%

7 0.1 40.76% 21.05%

8 0.1 37.92% 31.58%

9 0.1 34.60% 36.84%

10 0.1 33.18% 42.11%

11 0.1 27.01% 36.84%

12 0.1 24.17% 42.11%

13 0.1 22.28% 42.11%

14 0.1 21.33% 42.11%

15 0.1 20.85% 47.37%

16 0.1 18.48% 52.63%

17 0.1 17.54% 78.95%

18 0.1 7.58% 78.95%

19 0.1 5.69% 100.00%

20 0.1 0.00% 100.00%

21 0.1 0.00% 100.00%

22 0.1 0.00% 100.00%

23 0.1 0.00% 100.00%

24 0.1 0.00% 100.00%

25 0.1 0.00% 100.00%

have been accepted. While this does result in wasted e�orts, it is still a signi�cant

improvement from having to perform inspections for all 211 fault-�xes, which would

have yielded no errors. Four fault-�x inspections were classi�ed as ACCEPT when they

should have been classi�ed as REJECT . However, system test veri�es all fault-�xes in

subsequent releases. Therefore, the release of four faults that were not �xed properly,

FAU Technical Report TR-CSE-01-20 62

Table 19: Evaluation of Entire Data Set

Model (Cross-Validation)

Actual ACCEPT REJECT TOTAL

ACCEPT 139 72 211

65.88% 34.12% 100%

REJECT 4 15 19

21.05% 78.95% 100%

TOTAL 143 87 230

PERCENT 62.17% 37.83% 100%

PRIOR 91.74% 8.26%

to system test, is a small tradeo� for resources saved by not having to perform 139

unnecessary inspections.

In our data set, the average time spent by an inspection team, preparing and con-

ducting inspections is 0.79 of an hour. The time savings for the 139 inspections would

then be 109 (139*0.79) hours. More productive use of these hours could be spent on

the riskier areas of the project to provide greater reliability instead of wasting them on

ine�ective inspections of fault-�xes. Given additional data sets with more observations,

the resource allocation improvements would no doubt have a great impact on the overall

quality of the software. As the delivery date for a product quickly approaches, time be-

comes an increasingly precious commodity. The use of the software quality models built

can allow management to make more appropriate use of the precious time left. This will

ensure that the established reliability and quality standards can still be achieved in the

FAU Technical Report TR-CSE-01-20 63

presence of tight schedules for product delivery to market.

5 Conclusions

This section draws conclusions from the results of the experiments discussed in the pre-

vious section. It also provides the areas for future work.

With the number of software driven devices on the rise, and more people depending

on them, it is imperative for organizations to ensure the reliability of its software systems.

However, the costs associated with developing software are also ever increasing. It then

becomes di�cult for project managers to remain within budget and on schedule. As a

result, quality and reliability are often reduced in order to meet the promised delivery

dates.

Through the use of software quality models, managers have the opportunity to dis-

cover areas for improvement in their development processes. The models can provide

managers with the insight that will allow them to improve their reliability enhancement

and resource allocation strategies.

From our research, we have proven that CBR is a simple modeling methodology

that can be used to develop accurate and useful models faster, easier, and cheaper. It

is fast because very few metrics were needed to build these models. In both of our case

studies, only �ve independent variables were needed. It is easy because CBR is simple,

and easy-to-use and interpret. The CBR methodology is a methodology to which any

user can relate. In addition, CBR works very well with raw metrics. The combination of

these reasons makes CBR very cheap to implement.

The �rst case study proves that accurate software quality models can be built to

FAU Technical Report TR-CSE-01-20 64

predict the quality of the software prior to system test. The classi�cation models indi-

cated a ROI for determining the FP �les early at approximately 50%. This reveals that

by using classi�cation models, managers have the opportunity to save time and money

by identifying FP �les early. The prediction models were much more impressive because

they were able to predict the number of faults discovered in each source �le during sys-

tem test to within one fault. By having this information early, test managers will know

exactly which �les are more likely to contain faults. They can also ascertain how long to

continue testing by comparing the number of faults discovered to the predicted number

of faults. As a result, resource allocation during system test could be greatly enhanced.

The second case study proves that a software quality model can be built to determine

the outcome of a fault-�x inspection, thereby allowing managers to save time, money, and

energy by inspecting only the fault-�xes that contain errors. The ROI for determining

the outcome of the fault-�x inspections early was approximately 24%. This indicates

that there is a potential opportunity to forego the ine�ective fault-�x inspections for

more productive tasks.

Software quality models can be of great use to managers. They have the ability

to provide management with insight to better control their development and testing

processes. By making their processes more e�cient and e�ective, managers have the

ability to provide a reliable, high quality product in less time.

The use of CBR with few raw metrics revealed interesting results. However, it is

necessary to perform more investigation on subsequent releases or projects using CBR to

further establish the bene�ts of CBR as an e�cient modeling technique. Other product

and process metrics such as call graph and control ow graph metrics mentioned in section

2 could be used to determine their e�ectiveness with CBR. In addition, larger data sets

FAU Technical Report TR-CSE-01-20 65

for fault-�xes could be obtained to further validate the impact of software quality models

on resource allocation strategies.

Acknowledgments

We thank Ken McGill for his encouragement and support. We thank Bojan Cukic for

helpful discussions. This work was supported in part by Cooperative Agreement NCC 2-

1141 from NASA Ames Research Center, Software Technology Division (Independent

Veri�cation and Validation Facility). The �ndings and opinions in this paper belong

solely to the authors, and are not necessarily those of the sponsor. Special thanks to

Naeem Seliya for his patient reviews of this report.

References

[1] Y. Berkovich. Software quality prediction using case-based reasoning. Master's

thesis, Florida Atlantic University, Boca Raton, Florida USA, Aug. 2000. Advised

by Taghi M. Khoshgoftaar.

[2] T. M. Khoshgoftaar, E. B. Allen,Y. Berkovich, F. D. Ross. Diagnostic Tools for

indentifying high-risk software modules: a case-based reasoning approach. Submit-

ted to NASA Independent Veri�cation and Validation Facility. Technical Report

TR-CSE-00-20, Florida Atlantic University, Boca Raton, Florida USA, June 2000.

[3] K. Ganesan, T. M. Khoshgoftaar, and E. B. Allen. Case-based software quality pre-

diction. International Journal of Software Engineering and Knowlegde Engineering,

10(2):139{152, 2000.

[4] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel. Early quality

prediction: A case study in telecommunications. IEEE Software, 13(1):65{71, Jan.

1996.

[5] T. M. Khoshgoftaar and E. B. Allen. Modeling the risk of software faults. Technical

Report TR-CSE-00-06, Florida Atlantic University, Boca Raton, Florida USA, Feb.

2000.

FAU Technical Report TR-CSE-01-20 66

[6] T. M. Khoshgoftaar and E. B. Allen. Predicting the order of fault-prone modules

in legacy software. In Proceedings of the Ninth International Symposium on Soft-

ware Reliability Engineering, pages 344{353, Paderborn, Germany, Nov. 1998. IEEE

Computer Society.

[7] T. M. Khoshgoftaar, E. B. Allen, L. A. Bullard, R. Halstead, and G. P. Trio. A tree-

based classi�cation model for analysis of a military software system. In Proceedings of

the IEEE High-Assurance Systems Engineering Workshop, pages 244{251, Niagara

on the Lake, Ontario, Canada, Oct. 1996. IEEE Computer Society.

[8] T. M. Khoshgoftaar, D. L. Lanning, and A. S. Pandya. A comparative study of

pattern recognition techniques for quality evaluation of telecommunications software.

IEEE Journal on Selected Areas in Communications, 12(2):279{291, Feb. 1994.

[9] T. M. Khoshgoftaar and R. M. Szabo. Improving code churn predictions during the

system test and maintenance phases. In Proceedings of the International Conference

on Software Maintenance, pages 58{67, Victoria, BC Canada, Sept. 1994. IEEE

Computer Society.

[10] T. M. Khoshgoftaar, E. B. Allen, and J. C. Busboom. Software quality model-

ing: The software measurement analysis and reliability toolkit. IEEE International

Conference on Tools with Arti�cial Intelligence, pages 54{61, Nov 2000.

[11] T. M. Khoshgoftaar, K. Ganesan, E. B. Allen, F. D. Ross, R. Munikoti, N. Goel, and

A. Nandi. Predicting fault-prone modules with case-based reasoning. In Proceedings

of the Eighth International Symposium on Software Reliability Engineering, pages

27{35, Albuquerque, New Mexico USA, Nov. 1997. IEEE Computer Society.

[12] T. M. Khoshgoftaar and E. B. Allen. A practical classi�cation rule for software

quality models. IEEE Transactions on Reliability, 49(2), June 2000. In press.

[13] T. M. Khoshgoftaar and E. B. Allen and W. D. Jones and J. P. Hudepohl.

Data Mining for Predictiors of Software Quality International Journal of Software

Engineering and Knowledge Engineering, 1999.

[14] T. M. Khoshgoftaar and E. B. Allen Classi�cation of Fault-Prone Software Modules:

Prior Probabilities, Costs, and Model Evaluation Empirical Software Engineering:

An International Journal, Volume3:275{298, Sep. 1998.

[15] T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi and J. McMullan Detec-

tion of Software Modules with High Debug Code Churn in a Very Large Legacy

System Proceedings of the Seventh International Symposium on Software Reliability

Engineering, pages 364{371, Oct. 1996.

FAU Technical Report TR-CSE-01-20 67

[16] R. Kowalski. AI and software engineering. In Arti�cial Intelligence and Software

Engineering, pages 339{352. Ablex Publishing, Norwood, NJ USA, 1991.

[17] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,

se{2(4):308{320, Dec. 1976.

[18] G. J. Myers. Composite/Structured Design. Van Nostrand Reinhold, New York,

1978.

[19] S. L. Peeger. Assessing measurement. IEEE Software, 14(2):25{26, Mar. 1997.

Editor's introduction to special issue.

[20] A. A. Porter and R. W. Selby. Empirically guided software development using

metric-based classi�cation trees. IEEE Software, 7(2):46{54, Mar. 1990.

[21] F. Ross. An Empirical Study of Analogy Based Software Quality Classi�cation

Models. Master's thesis, FAU, May 2001.

[22] N. Sundaresh. An Empirical Study of Analogy Based Software Fault Prediction.

Master's thesis, FAU, May 2001.

[23] Z. Xu Fuzzy Logic Techniques for Software Reliability Engineering. Ph.D. disserta-

tion, FAU, May 2001. Advised by T. M. Khoshgoftaar.

